Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.215
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 349-370, mayo 2024. ilus
Artigo em Inglês | LILACS | ID: biblio-1538077

RESUMO

Age-related neurological disorders (ANDs), including neurodegenerative diseases, are complex illnesses with an increasing risk with advancing years. The central nervous system's neuropathological conditions, including oxidative stress, neuroinflammation, and protein misfolding, are what define ANDs. Due to the rise in age-dependent prevalence, efforts have been made to combat ANDs. Vitis viniferahas a long history of usageto treat a variety of illness symptoms. Because multiple ligand sites may be targeted, Vitis viniferacomponents can be employed to treat ANDs. This is demonstrated by the link between the structure and action of these compounds. This review demonstrates that Vitis viniferaand its constituents, including flavonoids, phenolic compounds, stilbenoidsandaromatic acids, are effective at reducing the neurological symptoms and pathological conditions of ANDs. This is done by acting as an antioxidant and anti-inflammatory. The active Vitis vinifera ingredients have therapeutic effects on ANDs, as this review explains.


Las enfermedades neurológicas asociadas a la edad (AND, por su sigla en inglés) incluyendo las enfermedades neurodegenerativas, son enfermedades complejas con un riesgo creciente con la edad. Las condiciones neuropatológicas del sistema nervioso central, que incluyen el estrés oxidativo, la neuro inflamación, y el plegado erróneo de proteínas, son lo que define las AND. Debido al aumento en la prevalencia dependiente de la edad, se han hecho esfuerzos para combatir las AND. Vitis vinifera tiene una larga historia de uso para el tratamiento de síntomas. Puesto que puede hacer objetivo a muchos sitios ligando, los componentes de Vitis viniferase pueden utilizar para tratar AND. Esto se demuestra por el vínculo entre la estructura y la acción de estos compuestos. Esta revisión demuestra que la Vitis viniferay sus constituyentes, incluídos los flavonoides, componentes fenólicos, estilbenoides, y ácidos aromáticos, son efectivos para reducir los síntomas neurológicos y las condiciones patológicas de AND. Esto se produce por su acción como antioxidante y antiinflamatorio. Los ingredientes activos de Vitis vinifera tienen efectos terapéuticos en AND, y esta revisión lo explica.


Assuntos
Extratos Vegetais/uso terapêutico , Vitis/química , Doenças do Sistema Nervoso/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico
2.
Plant J ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646817

RESUMO

The main bottleneck in the application of biotechnological breeding methods to woody species is due to the in vitro regeneration recalcitrance shown by several genotypes. On the other side, woody species, especially grapevine (Vitis vinifera L.), use most of the pesticides and other expensive inputs in agriculture, making the development of efficient approaches of genetic improvement absolutely urgent. Genome editing is an extremely promising technique particularly for wine grape genotypes, as it allows to modify the desired gene in a single step, preserving all the quality traits selected and appreciated in elite varieties. A genome editing and regeneration protocol for the production of transgene-free grapevine plants, exploiting the lipofectamine-mediated direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to target the phytoene desaturase gene, is reported. We focused on Nebbiolo (V. vinifera), an extremely in vitro recalcitrant wine genotype used to produce outstanding wines, such as Barolo and Barbaresco. The use of the PEG-mediated editing method available in literature and employed for highly embryogenic grapevine genotypes did not allow the proper embryo development in the recalcitrant Nebbiolo. Lipofectamines, on the contrary, did not have a negative impact on protoplast viability and plant regeneration, leading to the obtainment of fully developed edited plants after about 5 months from the transfection. Our work represents one of the first examples of lipofectamine use for delivering editing reagents in plant protoplasts. The important result achieved for the wine grape genotype breeding could be extended to other important wine grape varieties and recalcitrant woody species.

3.
BMC Plant Biol ; 24(1): 283, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627633

RESUMO

BACKGROUND: Bud sports occur spontaneously in plants when new growth exhibits a distinct phenotype from the rest of the parent plant. The Witch's Broom bud sport occurs occasionally in various grapevine (Vitis vinifera) varieties and displays a suite of developmental defects, including dwarf features and reduced fertility. While it is highly detrimental for grapevine growers, it also serves as a useful tool for studying grapevine development. We used the Witch's Broom bud sport in grapevine to understand the developmental trajectories of the bud sports, as well as the potential genetic basis. We analyzed the phenotypes of two independent cases of the Witch's Broom bud sport, in the Dakapo and Merlot varieties of grapevine, alongside wild type counterparts. To do so, we quantified various shoot traits, performed 3D X-ray Computed Tomography on dormant buds, and landmarked leaves from the samples. We also performed Illumina and Oxford Nanopore sequencing on the samples and called genetic variants using these sequencing datasets. RESULTS: The Dakapo and Merlot cases of Witch's Broom displayed severe developmental defects, with no fruit/clusters formed and dwarf vegetative features. However, the Dakapo and Merlot cases of Witch's Broom studied were also phenotypically different from one another, with distinct differences in bud and leaf development. We identified 968-974 unique genetic mutations in our two Witch's Broom cases that are potential causal variants of the bud sports. Examining gene function and validating these genetic candidates through PCR and Sanger-sequencing revealed one strong candidate mutation in Merlot Witch's Broom impacting the gene GSVIVG01008260001. CONCLUSIONS: The Witch's Broom bud sports in both varieties studied had dwarf phenotypes, but the two instances studied were also vastly different from one another and likely have distinct genetic bases. Future work on Witch's Broom bud sports in grapevine could provide more insight into development and the genetic pathways involved in grapevine.


Assuntos
Folhas de Planta , Vitis , Vitis/genética , Regulação da Expressão Gênica de Plantas
4.
Front Plant Sci ; 15: 1358213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628369

RESUMO

When grapevine decline, characterized by a premature decrease in vigor and yield and sometimes plant death, cannot be explained by pathological or physiological diseases, one may inquire whether the microbiological status of the soil is responsible. Previous studies have shown that the composition and structure of bacterial and fungal microbial communities in inter-row soil are affected in areas displaying vine decline, compared to areas with non-declining vines within the same plot. A more comprehensive analysis was conducted in one such plot. Although soil chemical parameters could not directly explain these differences, the declining vines presented lower vigor, yield, berry quality, and petiole mineral content than those in non-declining vines. The bacterial and fungal microbiome of the root endosphere, rhizosphere, and different horizons of the bulk soil were explored through enzymatic, metabolic diversity, and metabarcoding analysis in both areas. Despite the lower microbial diversity and richness in symptomatic roots and soil, higher microbial activity and enrichment of potentially both beneficial bacteria and pathogenic fungi were found in the declining area. Path modeling analysis linked the root microbial activity to berry quality, suggesting a determinant role of root microbiome in the berry mineral content. Furthermore, certain fungal and bacterial taxa were correlated with predicted metabolic pathways and metabolic processes assessed with Eco-Plates. These results unexpectedly revealed active microbial profiles in the belowground compartments associated with stressed vines, highlighting the interest of exploring the functional microbiota of plants, and more specifically roots and rhizosphere, under stressed conditions.

5.
J Agric Food Chem ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648422

RESUMO

This study focuses on countering Fusarium graminearum, a harmful fungal pathogen impacting cereal crops and human health through mycotoxin production. These mycotoxins, categorized as type B trichothecenes, pose significant health risks. Research explores natural alternatives to synthetic fungicides, particularly investigating phenolics in grapevine byproducts. Thirteen eco-extracts from five French grape varieties (Merlot, Cabernet Sauvignon, Sauvignon blanc, Tannat, and Artaban) exhibited substantial antifungal properties, with ten extracts displaying remarkable effects. Extracts from grapevine stems and roots notably reduced fungal growth by over 91% after five days. Through UHPLC-HRMS/MS analysis and metabolomics, the study identified potent antifungal compounds such as ampelopsin A and cyphostemmin B, among other oligomeric stilbenes. Interestingly, this approach showed that flavan-3-ols have been identified as markers for extracts that induce fungal growth. Root extracts from rootstocks, rich in oligostilbenes, demonstrated the highest antifungal activity. This research underscores grapevine byproducts' potential both as a sustainable approach to control F. graminearum and mycotoxin contamination in cereal crops and the presence of different metabolites from the cultivars of grapevine, suggesting different activities.

6.
Sci Rep ; 14(1): 6678, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509214

RESUMO

Failure in irrigation management of grapevines grown in the Brazilian semiarid region can affect bud fertility. Adequate irrigation, considering both the development of bunches in the current cycle and the formation of fertile buds for subsequent cycles, can bring significant advances to viticulture. Therefore, the objective of this research was to investigate the effect of different irrigation levels during flowering on the formation of buds and potential bunches of 'Arra 15' grapevine and its relationship with metabolic processes. A field experiment was carried out in a commercial vineyard in Petrolina, Pernambuco, Brazil, during the 2021 and 2022 seasons. The experiment was designed in randomized blocks with four replications and five irrigation levels (70; 85; 100; 115 and 130% of crop evapotranspiration - ETc) during three production cycles. The variables fertile bud, vegetative bud, dead bud, potential fertility of the basal, median, and apical regions of the branches, number of potential bunches, reducing sugar, total soluble sugar, net photosynthesis, stomatal conductance, transpiration, and relative chlorophyll index were evaluated. The 115% ETc irrigation level improved the number of fertile buds and number of potential bunches. Irrigation level above 115% ETc increased gas exchange and relative chlorophyll index, while 70% ETc increased leaf sugar content. The most appropriate irrigation strategy is the application of 115% ETc during the flowering stage, for the increase of fertile buds and potential bunches of the next cycle, without influencing the vine metabolism. Total soluble sugars are a promising indicator of water deficit during flowering and as an indicator of vegetative bud formation for the next cycle.


Assuntos
Vitis , Vitis/metabolismo , Brasil , Inflorescência/metabolismo , Água/metabolismo , Folhas de Planta/metabolismo , Carboidratos , Açúcares/metabolismo , Clorofila/metabolismo
7.
Plant Physiol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507576

RESUMO

Grapevine (Vitis vinifera L.) incurs severequality degradation and yield loss from powdery mildew, a major fungal disease caused by Erysiphe necator. ENHANCED DISEASE RESISTANCE1 (EDR1), a Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK), negatively regulates defense responses against powdery mildew in Arabidopsis (Arabidopsis thaliana). However, little is known about the role of the putatively orthologous EDR1 gene in grapevine. In this study, we obtained grapevine VviEDR1-edited lines using CRISPR/Cas9. Plantlets containing homozygous and bi-allelic indels in VviEDR1 developed leaf lesions shortly after transplanting into the soil and died at the seedling stage. Transgenic plants expressing wild-type VviEDR1 and mutant Vviedr1 alleles as chimera (designated as VviEDR1-chi) developed normally and displayed enhanced resistance to powdery mildew. Interestingly, VviEDR1-chi plants maintained a spatiotemporally distinctive pattern of VviEDR1 mutagenesis: while almost no mutations were detected from terminal buds, ensuring normal function of the apical meristem, mutations occurred in young leaves and increased as leaves matured, resulting in resistance to powdery mildew. Further analysis showed that the resistance observed in VviEDR1-chi plants was associated with callose deposition, increased production of salicylic acid (SA) and ethylene (ET), H2O2 production and accumulation, and host cell death. Surprisingly, no growth penalty was observed with VviEDR1-chi plants. Hence, this study demonstrated a role of VviEDR1 in the negative regulation of resistance to powdery mildew in grapevine and provided an avenue for engineering powdery mildew resistance in grapevine.

8.
Food Sci Nutr ; 12(3): 1818-1833, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455198

RESUMO

Gray mold caused by Botrytis cinerea is a serious disease of grape (Vitis vinifera) during storage. The aim of this study is to evaluate the effect of atmosphere cold plasma (a novel and nonthermal technology) on inactivation of B. cinerea and preservation of chemical, physical, and mechanical characteristics of grape inoculated with B. cinerea. Herein, different time of cold plasma (0, 10, 20, and 40 s) was firstly considered to be the main factors, besides different storage time (1, 2, 3, 4, and 5 weeks) at 4°C. According to the results, plasma treatment exhibited inhibitory effect on gray mold percentage and microbial load of B. cinerea (log CFU g-1) during postharvest storage. So, in the last week, the gray mold percentage and microbial load in the control were 100% and 3.6 log CFU g-1, and in 40-s plasma were 4.5% and 2.53 log CFU g-1, respectively. Although the minimum infection and microbial load were observed in 40-s plasma, better postharvest quality preservation was observed in short-time cold plasma treatment (≤20 s). Forty-second plasma caused fruit tissue destruction and negatively decreased mechanical indices (Emod: 0.0028, Fmax = 1.78, and W = 3.18) and weight loss (91.9) in comparison with ≤20-s plasma, in which mechanical indices (Emod =0.0077, Fmax = 3.6, and W = 10.06) and weight loss (1/1) were higher. The long-time cold plasma treatment (40 s) had also maximum effects on color changes (10) and surface temperature (2.8°C). Although the highest TSS and TA were observed in 40-s Plasma, but different time of plasma treatments had no effect on pH. Altogether, these results indicate that the short-time cold plasma treatment can inactivate B. cinerea on grape berries and preserve crop quality properties.

9.
Microb Pathog ; 190: 106613, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484919

RESUMO

This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.


Assuntos
Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Vitis , Prata/farmacologia , Prata/química , Prata/metabolismo , Nanopartículas Metálicas/química , Animais , Humanos , Vitis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Tamanho da Partícula , Química Verde , Bactérias Gram-Negativas/efeitos dos fármacos , Bombyx , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Larva/efeitos dos fármacos , Leveduras/efeitos dos fármacos
10.
Arch Microbiol ; 206(4): 174, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493436

RESUMO

The present study focuses on investigating 60 strains of yeast isolated from the natural fermentation broth of Vitis labruscana Baily × Vitis vinifera L. These strains underwent screening using lysine culture medium and esculin culture medium, resulting in the identification of 27 local non-Saccharomyces yeast strains exhibiting high ß-glucosidase production. Subsequent analysis of their fermentation characteristics led to the selection of four superior strains (Z-6, Z-11, Z-25, and Z-58) with excellent ß-glucosidase production and fermentation performance. Notably, these selected strains displayed a dark coloration on esculin medium and exhibited robust gas production during Duchenne tubules' fermentation test. Furthermore, all four non-Saccharomyces yeast strains demonstrated normal growth under specific conditions including SO2 mass concentration ranging from 0.1 to 0.3 g/L, temperature between 25 and 30 °C, glucose mass concentration ranging from 200 to 400 g/L, and ethanol concentration at approximately 4%. Molecular biology identification confirmed that all selected strains belonged to Pichia kudriavzevii species which holds great potential for wine production.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae/metabolismo , Fermentação , beta-Glucosidase/metabolismo , Esculina/análise , Leveduras/metabolismo , Vinho/análise , Pichia/metabolismo
11.
Plant Methods ; 20(1): 45, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500114

RESUMO

BACKGROUND: For ten years, CRISPR/cas9 system has become a very useful tool for obtaining site-specific mutations on targeted genes in many plant organisms. This technology opens up a wide range of possibilities for improved plant breeding in the future. In plants, the CRISPR/Cas9 system is mostly used through stable transformation with constructs that allow for the expression of the Cas9 gene and sgRNA. Numerous studies have shown that site-specific mutation efficiency can vary greatly between different plant species due to factors such as plant transformation efficiency, Cas9 expression, Cas9 nucleotide sequence, the addition of intronic sequences, and many other parameters. Since 2016, when the first edited grapevine was created, the number of studies using functional genomic approaches in grapevine has remained low due to difficulties with plant transformation and gene editing efficiency. In this study, we optimized the process to obtain site-specific mutations and generate knock-out mutants of grapevine (Vitis vinifera cv. 'Chardonnay'). Building on existing methods of grapevine transformation, we improved the method for selecting transformed plants at chosen steps of the developing process using fluorescence microscopy. RESULTS: By comparison of two different Cas9 gene and two different promoters, we increased site-specific mutation efficiency using a maize-codon optimized Cas9 containing 13 introns (zCas9i), achieving up to 100% biallelic mutation in grapevine plantlets cv. 'Chardonnay'. These results are directly correlated with Cas9 expression level. CONCLUSIONS: Taken together, our results highlight a complete methodology for obtaining a wide range of homozygous knock-out mutants for functional genomic studies and future breeding programs in grapevine.

12.
J Helminthol ; 98: e26, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509862

RESUMO

Grapevine fanleaf virus (GFLV) is one of the most severe virus diseases of grapevines, causing fanleaf degeneration that is transmitted by Xiphinema index. This paper aims to isolate Xiphinema species from Tunisian vineyard soil samples and assess their ability to acquire and transmit GFLV under natural and controlled conditions. Based on morphological and morphometric analyses, Tunisian dagger nematodes were identified as X. index and Xiphinema italiae. These results were confirmed with molecular identification tools using species-specific polymerase chain reaction primers. The total RNA of GFLV was extracted from specimens of Xiphinema and amplified based on real-time polymerase chain reaction using virus-specific primers. Our results showed that X. index could acquire and transmit the viral particles of GFLV. This nepovirus was not detected in X. italiae, under natural conditions; however, under controlled conditions, this nematode was able to successfully acquire and transmit the viral particles of GFLV.


Assuntos
Nematoides , Nepovirus , Animais , RNA Viral/genética , Nematoides/genética , Nepovirus/genética , Vetores de Doenças , Doenças das Plantas
13.
Microorganisms ; 12(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543628

RESUMO

Vitis vinifera, an economically significant grapevine species, is known for wine, juice, and table grape production. The berries of wine grapes host a diverse range of microorganisms influencing both grapevine health and the winemaking process. Indigenous to Greece, the emblematic variety Assyrtiko, renowned for high-quality white wines, originated from Santorini and spread to various Greek regions. Despite existing studies on the microbiota of several varieties, the carposphere microbiota of Assyrtiko grapes remains unexplored. Thus, we conducted a spatiotemporal metagenomic study to identify the epiphytic microbial community composition of Assyrtiko grapes. The study was conducted in two consecutive vintage years (2019 and 2020) across three different and distinct viticulture regions in Greece (Attica, Thessaloniki, Evros). We performed amplicon sequencing, targeting the 16S rRNA gene for bacteria and the ITS region for fungi, with subsequent comprehensive bioinformatic analysis. Our data indicate that the distribution and relative abundance of the epiphytic carposphere microbial communities of the Assyrtiko variety are shaped both by vintage and biogeography.

14.
Plants (Basel) ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475579

RESUMO

Flow cytometry (FCM) is a widely used technique to study genome size (C-value), but recalcitrant metabolites in grapevines often hinder its efficiency in grapevine research. The aim of the present study was (i) to develop a novel buffer tailormade for the nuclei isolation of grapevines and (ii) to characterize a Cypriot germplasm collection based on C-values. A local cultivar "Xinisteri" was used as a pilot test to evaluate a Sorbitol-based buffer, while sprouting, young, and fully matured leaves were examined to evaluate the developmental parameter. The novel Sorbitol buffer was shown to have a coefficient of variation (CV) of 4.06%, indicating improved properties compared to other commonly used FCM buffers [WPB (7.69%), LB01 (6.69%), and LB (7.13%), respectively]. In addition, a significant variation in genome size between genotypes was found in a comprehensive application with 24 grape varieties. Nucleic content (2C) ranged from 0.577/1C pg for the "Assyrtiko" cultivar up to 0.597/1C pg for the "Spourtiko" cultivar, revealing a 17.6/1C Mbp difference. The lowest coefficient of variation (CV) across all entries was found in the variety "Ofthalmo" (2.29%), while the highest was observed in "Pinot Noir" (3.44%). Anova analysis revealed several distinct clusters, showing that in several cases, C-values can be used as a simple method to distinguish grapevine cultivars.

15.
Foods ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397485

RESUMO

UV-B radiation and water deficit can challenge Pinot noir growth and fruit quality. The aim of this work is to determine the effects of UV-B and water deficit on the physiological indices, amino acids, and volatile compounds of Pinot noir vine and fruit. The results showed that both individual and combined treatments caused a decrease in the leaf SPAD, with the largest amplitude being observed in the combined treatment. Water deficit also decreased the leaf water potential and increased the juice δ13C‱ at harvest, which was the opposite of the latter under UV-B radiation. Interestingly, most of the physiological indices under combined stresses did not show significant changes compared with that under no UV-B and the well-watered control treatment. Moreover, the concentrations of amino acids and volatile compounds in the berries were determined at harvest. The amino acid contents were significantly increased by the combined treatment, particularly proline (Pro), aspartate (Arg), alanine (Ala), and threonine (Thr). There were slight increases in volatile compounds. This research substantially contributed to improve our scientific understanding of UV-B and water deficit responses in an important commercial species. In addition, it highlighted some future research to produce high-quality wines with the anticipated specific characteristics.

16.
Life (Basel) ; 14(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398737

RESUMO

Vitis vinifera extracts have been shown to possess antioxidant activity because of their polyphenol content. In addition, their therapeutic potential against several diseases, including cancer, has been reported. In this study, we produced twelve extracts from the seeds, fruit, leaves, and wood of the Vitis vinifera Airen variety using different extraction methodologies and measured their total polyphenol content (TPC). We also determined their antioxidant and antiproliferative effects against normal cells and evaluated the most potent extract against a panel of breast cancer cell lines. We found that the extracts produced by the seeds of Vitis vinifera had a higher TPC compared to the other parts of the plant. Most extracts produced from seeds had antioxidant activity and did not show cytotoxicity against normal breast cells. The extract produced from whole organic seeds of white grape showed the best correlation between the dose and the ROS inhibition at all time points compared to the other seed extracts and also had antiproliferative properties in estrogen-receptor-positive MCF-7 breast cancer cells. Its mechanism of action involves inhibition of proteins Bcl-2, Bcl-xL, and survivin, and induction of apoptosis. Further investigation of the constituents and activity of Vitis vinifera extracts may reveal potential pharmacological applications of this plant.

17.
Plant Sci ; 342: 112037, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367820

RESUMO

DNA cytosine methylation, an epigenetic mechanism involved in gene regulation and genome stability, remains poorly understood in terms of its role under changing environmental conditions. Previous research using methylation-sensitive amplified polymorphism (MSAP) markers in a Vitis vinifera L. cv. Malbec clone showed vineyard-specific DNA methylation polymorphism, but no change in overall methylation levels. To complement these findings, the present study investigates the intra-seasonal epigenetic dynamics between genetically identical plants grown in different vineyards through a transplanting experiment. Cuttings of the same clone, showing differential methylation patterns imposed by the vineyard of origin (Agrelo and Gualtallary), were cultivated in a common vineyard (Lunlunta). Using high-performance liquid chromatography-ultraviolet detection, the quantification of global DNA 5-methylcytosine (5-mC) levels revealed relatively low overall 5-mC percentages in grapevines, with higher levels in Agrelo (5.8%) compared to Gualtallary plants (3.7%). The transplanted plants maintained the 5-mC levels differences between vineyards (9.8% vs 6.2%), which equalized in subsequent seasons (7.5% vs 7%). Additionally, the study examined 5-mC polymorphism using MSAP markers in Lunlunta transplanted plants over three seasons. The observed differences between vineyards in MSAP patterns during the initial growing season gradually diminished, suggesting a reprogramming of the hemimethylated pattern following implantation in the common vineyard. In contrast, the non-methylated pattern exhibited greater stability, indicating a potential memory effect. Overall, this study provides valuable insights into the dynamic nature of DNA methylation in grapevines under changing environmental conditions, with potential implications for crop management and breeding strategies.


Assuntos
Citosina , Metilação de DNA , Metilação de DNA/genética , Melhoramento Vegetal , Epigênese Genética , DNA
18.
Viruses ; 16(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38399980

RESUMO

A comprehensive study on the whole spectrum of viruses and viroids in five Iranian grapevine cultivars was carried out using sRNA libraries prepared from phloem tissue. A comparison of two approaches to virus detection from sRNAome data indicated a significant difference in the results and performance of the aligners in viral genome reconstruction. The results showed a complex virome in terms of viral composition, abundance, and richness. Thirteen viruses and viroids were identified in five Iranian grapevine cultivars, among which the grapevine red blotch virus and grapevine satellite virus were detected for the first time in Iranian vineyards. Grapevine leafroll-associated virus 1 (GLRaV1) and grapevine fanleaf virus (GFLV) were highly dominant in the virome. However, their frequency and abundance were somewhat different among grapevine cultivars. The results revealed a mixed infection of GLRaV1/grapevine yellow speckle viroid 1 (GYSVd1) and GFLV/GYSVd1 in grapevines that exhibited yellows and vein banding. We also propose a threshold of 14% of complete reconstruction as an appropriate threshold for detection of grapevine viruses that can be used as indicators for reliable grapevine virome profiling or in quarantine stations and certification programs.


Assuntos
Closteroviridae , Viroides , Vitis , Irã (Geográfico) , Viroma , Viroides/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças das Plantas
19.
Plant Physiol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366578

RESUMO

Grapevine (Vitis vinifera) is an economically important fruit crop worldwide. The widely cultivated grapevine is susceptible to powdery mildew caused by Erysiphe necator. In this study, we used CRISPR-Cas9 to simultaneously knock out VviWRKY10 and VviWRKY30 encoding two transcription factors reported to be implicated in defense regulation. We generated 53 wrky10 single mutant transgenic plants and 15 wrky10 wrky30 double mutant transgenic plants. In a 2-year field evaluation of powdery mildew resistance, the wrky10 mutants showed strong resistance, while the wrky10 wrky30 double mutants showed moderate resistance. Further analyses revealed that salicylic acid (SA) and reactive oxygen species contents in the leaves of wrky10 and wrky10 wrky30 were substantially increased, as was the ethylene (ET) content in the leaves of wrky10. The results from dual luciferase reporter assays, electrophoretic mobility shift assays and chromatin immunoprecipitation assays demonstrated that VviWRKY10 could directly bind to the W-boxes in the promoter of SA-related defense genes and inhibit their transcription, supporting its role as a negative regulator of SA-dependent defense. By contrast, VviWRKY30 could directly bind to the W-boxes in the promoter of ET-related defense genes and promote their transcription, playing a positive role in ET production and ET-dependent defense. Moreover, VviWRKY10 and VviWRKY30 can bind to each other's promoters and mutually inhibit each other's transcription. Taken together, our results reveal a complex mechanism of regulation by VviWRKY10 and VviWRKY30 for activation of measured and balanced defense responses against powdery mildew in grapevine.

20.
Plant Biol (Stuttg) ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315499

RESUMO

Drought is becoming more frequent and severe in numerous wine-growing regions. Nevertheless, limited research has examined the legacy of recurrent droughts, focusing on leaf physiology and anatomy over consecutive seasons. We investigated drought legacies (after 2 years of drought exposure) in potted grapevines, focusing on stomatal behaviour under well-watered conditions during the third year. Vines were subjected for two consecutive years to short- (SD) or long-term (LD) seasonal droughts, or well-watered conditions (WW). In the third year, all plants were grown without water limitation. Water potential and gas exchange were monitored throughout the three seasons, while leaf morpho-anatomical traits were measured at the end of the third year. During droughts (1st and 2nd year), stem water potential of SD and LD plants fell below -1.1 MPa, with a consequent 75% reduction in stomatal conductance (gs ) compared to WW. In the 3rd year, when all vines were daily irrigated to soil capacity (midday stem water potential ~ -0.3 MPa), 45% lower values of gs were observed in the ex-LD group compared to both ex-SD and ex-WW. Reduced midrib vessel diameter, lower leaf theoretical hydraulic conductivity, and smaller stomata were measured in ex-LD leaves compared to ex-SD and ex-WW, likely contributing to the reduced gas exchange. Our findings suggest that grapevines exposed to drought may adopt a more water-conserving strategy in subsequent seasons, irrespective of current soil water availability, with the degree of change influenced by the intensity and duration of past drought events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...